skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scoggins, Matthew T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract JWST is revealing a remarkable new population of high-redshift (z ≳ 4), low-luminosity active galactic nuclei in deep surveys and detecting the host galaxy's stellar light in the most luminous and massive quasars atz ∼ 6 for the first time. Recent findings claim that supermassive black holes (SMBHs) in these systems are significantly more massive than predicted by the local black hole (BH) mass–stellar mass ( M BH - M ) relation and that this is not due to sample selection effects. Through detailed statistical modeling, we demonstrate that the coupled effects of selection biases (i.e., finite detection limit and requirements for detecting broad lines) and measurement uncertainties can largely explain the reported offset and flattening in the observed M BH - M relation toward the upper envelope of the local relation, even for those at M BH < 1 0 8 M . We further investigate the possible evolution of the M BH - M relation atz ≳ 4 with careful treatment of observational biases and consideration of the degeneracy between intrinsic evolution and dispersion in this relation. The bias-corrected intrinsic M BH - M relation in the low-mass regime ( M 1 0 10 M ) suggests a large population of low-mass BHs ( M BH 1 0 5 M ), possibly originating from lighter seeds, may remain undetected or unidentified. These results underscore the importance of forward modeling observational biases to better understand BH seeding and SMBH–galaxy coevolution mechanisms in the early universe, even with the deepest JWST surveys. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  2. Free, publicly-accessible full text available August 11, 2026
  3. ABSTRACT The existence of 109 M⊙ supermassive black holes (SMBHs) within the first billion years of the Universe remains a puzzle in our conventional understanding of black hole formation and growth. Several suggested formation pathways for these SMBHs lead to a heavy seed, with an initial black hole mass of 104–106 M⊙. This can lead to an overly massive BH galaxy (OMBG), whose nuclear black hole’s mass is comparable to or even greater than the surrounding stellar mass: the black hole to stellar mass ratio is Mbh/M* ≫ 10−3, well in excess of the typical values at lower redshift. We investigate how long these newborn BHs remain outliers in the Mbh − M* relation, by exploring the subsequent evolution of two OMBGs previously identified in the Renaissance simulations. We find that both OMBGs have Mbh/M* > 1 during their entire life, from their birth at z ≈ 15 until they merge with much more massive haloes at z ≈ 8. We find that the OMBGs are spatially resolvable from their more massive, 1011 M⊙, neighbouring haloes until their mergers are complete at z ≈ 8. This affords a window for future observations with JWST and sensitive X-ray telescopes to diagnose the heavy-seed scenario, by detecting similar OMBGs and establishing their uniquely high black hole-to-stellar mass ratio. 
    more » « less
  4. The existence of 109 M⊙ supermassive black holes (SMBHs) within the first billion years of the universe remains a puzzle in our conventional understanding of black hole formation and growth. The so-called direct-collapse scenario suggests that the formation of supermassive stars (SMSs) can yield the massive seeds of early SMBHs. This scenario leads to an overly massive BH galaxy (OMBG), whose nuclear black hole’s mass is comparable to or even greater than the surrounding stellar mass: a 104 − 106 M⊙ seed black hole is born in a dark matter halo with a mass as low as 107 − 108 M⊙. The black hole to stellar mass ratio is 𝑀bh/𝑀∗ ≫ 10−3, well in excess of the typical values at lower redshift. We investigate how long these newborn BHs remain outliers in the 𝑀bh − 𝑀∗ relation, by exploring the subsequent evolution of two OMBGs previously identified in the Renaissance simulations. We find that both OMBGs have𝑀bh/𝑀∗>1 during their entire life, from their birth at 𝑧≈15 until they merge with much more massive haloes at 𝑧 ≈ 8. We find that the OMBGs are spatially resolvable from their more massive, 1011 M⊙, neighboring haloes until their mergers are complete at 𝑧 ≈ 8. This affords a window for future observations with JWST and sensitive X-ray telescopes to diagnose the direct-collapse scenario, by detecting similar OMBGs and establishing their uniquely high black hole-to-stellar mass ratio. 
    more » « less